首頁 > 經典文史 > 超導現象應用 超導現象原理

超導現象應用 超導現象原理

來源:安安歷史網    閱讀: 1.09W 次
字號:

用手機掃描二維碼 在手機上繼續觀看

手機查看

超導現象一般指的是超導,導體在某一溫度下,電阻爲零的狀態,外文名叫做superconductivity,時間1911年,性能是低溫下失去電阻,應用領域在電子電氣、材料科學等。

超導體的基本特性

超導現象應用 超導現象原理

  關於超導材料轉變時比熱(c v )與電阻率(ρ)變化關係的圖像

超導現象是指材料在低於某一溫度時,電阻變爲零(以目前觀測,即使有,也小至10 歐姆·平方毫米/米以下)的現象,而這一溫度稱爲超導轉變溫度(T c )。超導現象的特徵是零電阻和完全抗磁性。

金屬導體的電阻會隨着溫度降低而逐漸減少。然而,對於普通導體如銅和銀,即使接近絕對零度時,仍然保有最低的電阻值,這是純度和其他缺陷的影響所致。另一方面,超導體的電阻值在低於其"臨界溫度"時,一般出現在絕對溫度20 K或更低時會驟降爲零。在超導體線材裏面的電流能夠不斷地持續而不需提供電能。如同磁性和原子能譜等現象,超導特性也是種量子效應。這種性質無法單純靠傳統物理學中理想化的“全導特性”來理解。

超導現象可在各種不同的材料上發生,包括單純的元素如錫和鋁,各種金屬合金和一些經過布塗的半導體材料。超導現象不會發生在貴金屬像是金和銀,也不會發生在大部分的磁性金屬上。

在1986年發現的銅氧鈣鈦陶瓷材料等系列,即所謂的 高溫超導體 ,具有臨界溫度超過90K的特質,基於各種因素促使學界又再度燃起研究的興趣。對於純研究的領域而言,這些材質呈現一種現象是當時BCS理論所無法解釋的。(依BCS理論,當溫度超過39K,庫珀對會不穩定而無法維持超導狀態。)而且,因爲這種超導狀態可在較容易達成的溫度下進行,尤其若能發現具備更高臨界溫度的材料時,則更能實現於業界應用。

超導體的分類

超導體的分類沒有唯一的標準,最常用的分類如下:

由物理性質分類 :可分成第一類超導體和第二類超導體。

由超導理論來分類 :可分成傳統超導體(若超導機制可用BCS理論解釋)和非傳統超導體(若超導機制不能用BCS理論解釋)。

由超導相變溫度來分類 :可分成高溫超導體(若可用液態氮冷卻就形成超導體)和 低溫超導體 (若需要其他技術來冷卻)。

由材料來分類 :它們可以是化學元素(如汞和鉛)、合金(如鈮鈦合金和鈮鍺合金)、陶瓷(如釔鋇銅氧和二硼化鎂)或有機超導體(如富勒烯和碳納米管,這可能都包括在化學元素之內,因爲它們是由碳組成)。

發現

1908年,荷蘭物理學家海克·卡末林·昂內斯成功將氦氣液化,隨後在1911年春,昂內斯在用液氦將汞的溫度降到4.15 K時,發現汞的電阻降爲零 。他把這種現象稱爲超導性。後來昂內斯和其他科學家陸續發現其他一些金屬也是超導體。昂內斯因爲對生產液氦的貢獻以及發現超導現象而獲得1913年的諾貝爾物理學獎。

完全抗磁性

1933年,德國物理學家瓦爾特·邁斯納(Walther Meissner)和羅伯特·奧克森菲爾德(Robert Ochsenfeld) 發現了超導體的完全抗磁性,即當超導體處於超導狀態時,超導體內部磁場爲零,對磁場完全排斥,即邁斯納效應。但當外部磁場大於臨界值時,超導性被破壞 。

原理

倫敦方程

解釋超導現象最早的理論是由弗裏茨·倫敦和海因茨·倫敦兄弟在1935年提出的倫敦方程 。這套方程基於經典電磁學理論並能有效的解釋邁斯納效應。根據倫敦方程,超導體內部的電場 E 以及磁場 B 可以表述爲以下關係(高斯單位制cgs):

∂ ∂ --> j s ∂ ∂ --> t = n s e 2 m E , ∇ ∇ --> × × --> j s = − − --> n s e 2 m B . {displaystyle { rac {partial mathbf {j} _{s}}{partial t}}={ rac {n_{s}e^{2}}{m}}mathbf {E} ,qquad mathbf {abla } imes mathbf {j} _{s}=-{ rac {n_{s}e^{2}}{m}}mathbf {B} .}

第一個方程說明了超導體零電阻,即無窮大電導的特性,第二個方程結合麥克斯韋方程組可以推導出磁場只能穿透超導體的表面,這個穿透深度稱之爲倫敦穿透深度,超導體內部的磁場則爲零,即是邁斯納效應。

BCS理論

1957年,美國物理學家約翰·巴丁、利昂·庫珀、約翰·施裏弗提出了以他們名字首字母命名的BCS理論 ,用於解釋超導現象的微觀機理。BCS理論認爲:晶格的振動,稱爲聲子(Phonon),使自旋和動量都相反的兩個電子組成動量爲零、總自旋爲零的庫珀對,稱爲電聲子相互作用。由於庫珀對的總自旋爲零,適用量子統計力學中波色子的理論,庫珀對如同超流體可以繞過晶格缺陷雜質流動從而無阻礙地形成超導電流。巴丁、庫珀、施裏弗因此獲得1972年的諾貝爾物理學獎。 不過,BCS理論並無法成功的解釋所謂 非常規超導體 ( 英語 : Unconventional superconductor ) ,或高溫超導的現象。

高溫超導體

  超導臨界溫度時間線 1900 to 2015

自1911年發現超導現象的很長一段時間內,物理學家認爲超導的上限溫度不會超過30 K。後來發現的超導臨界溫度高於30 K的都被稱爲高溫超導體。1953年,科學家發現了合金超導體硅化釩 。1986年1月,德國科學家約翰內斯·貝德諾爾茨和瑞士科學家卡爾·米勒發現陶瓷性金屬氧化物可以作爲超導體 ,開啓了銅基高溫超導體的時代,從而獲得了1987年諾貝爾物理學獎。1987年,美國華裔科學家朱經武與臺灣物理學家吳茂昆以及大陸科學家趙忠賢相繼在釔-鋇-銅-氧系材料上把臨界超導溫度提高到90K以上,液氮的“溫度壁壘”(77K)也被突破了 。1987年底,鉈-鋇-鈣-銅-氧系材料又把臨界超導溫度的記錄提高到125K。從1986年-1987年的短短一年多的時間裏,臨界超導溫度提高了近100K。大約1993年,鉈-汞-銅-鋇-鈣-氧系材料又把臨界超導溫度的記錄提高到138K 。

2008 年,東京工業大學的細野秀雄(Hideo Hosono)與其合作者發現了新的一類鐵基超導體LaO 1-x F x FeAs(超導臨界溫度26 K) 。隨後,鐵基超導體的超導臨界溫度很快被提高到55 K 。2012年,清華大學的薛其坤及起合作者發現生長在SrTiO3襯底上的單原子層FeSe具有高於77 K的超導臨界溫度 ,這也是目前鐵基超導體的最高超導臨界溫度記錄。

銅基超導體和鐵基超導體都是非傳統超導體,即是非BCS超導體,電子聲子耦合不能解釋這兩個體系的超導現象,目前還沒有統一的理論來解釋這兩類非傳統超導體。

2015年,物理學者發現,硫化氫在極度高壓的環境下(至少150GPa,也就是約150萬標準大氣壓),約於溫度203K (-70 °C)時會發生超導相變,是目前已知最高溫度的超導體。 非常有趣的是,硫化氫屬於傳統BCS超導體,這一發現也重新開拓了傳統超導體的新領域。

 參見

超導材料

高溫超導

鐵磁超導體

鐵基超導體