首頁 > 歷史解密 > 歷史記事 > 廣義相對論的原理是什麼 其理論內容如何

廣義相對論的原理是什麼 其理論內容如何

來源:安安歷史網    閱讀: 2.73K 次
字號:

用手機掃描二維碼 在手機上繼續觀看

手機查看

原理

等效原理:分爲弱等效原理和強等效原理,弱等效原理認爲慣性力場與引力場的動力學效應是局部不可分辨的。強等效原理認爲,則將“動力學效應”提升到“任何物理效應”。要強調,等效原理僅對局部慣性系成立,對非局部慣性系等效原理不一定成立。

廣義相對性原理:物理定律的形式在一切參考系都是不變的。該定理是狹義相對性原理的推廣。在狹義相對論中,如果我們嘗試去定義慣性系,會出現死循環:一般地,不受外力的物體,在其保持靜止或勻速直線運動狀態不變的座標系是慣性系;但如何判定物體不受外力?回答只能是,當物體保持靜止或勻速直線運動狀態不變時,物體不受外力。很明顯,邏輯出現了難以消除的死循環。這說明對於慣性系,人們無法給出嚴格定義,這不能不說是狹義相對論的嚴重缺憾。爲了解決這個問題,愛因斯坦直接將慣性系的概念從相對論中剔除,用“任何參考系”代替了原來狹義相對性原理中“慣性系”。

廣義相對論是基於狹義相對論的。如果後者被證明是錯誤的,整個理論的大廈都將垮塌。

廣義相對論的原理是什麼 其理論內容如何

爲了理解廣義相對論,我們必須明確質量在經典力學中是如何定義的。首先,讓我們思考一下質量在日常生活中代表什麼。“它是重量”?事實上,我們認爲質量是某種可稱量的東西,正如我們是這樣度量它的:我們把需要測出其質量的物體放在一架天平上。我們這樣做是利用了質量的什麼性質呢?是地球和被測物體相互吸引的事實。這種質量被稱作“引力質量

”(m1:m2=F1:F2)。我們稱它爲“引力的”是因爲它決定了宇宙中所有星星和恆星的運行:地球和太陽間的引力質量驅使地球圍繞後者作近乎圓形的環繞運動。

試着在一個平面上推你的汽車。你不能否認你的汽車強烈地反抗着你要給它的加速度。這是因爲你的汽車有一個非常大的質量。移動輕的物體要比移動重的物體輕鬆。質量也可以用另一種方式定義:“它反抗加速度”。這種質量被稱作“慣性質量”(m=F/a,注:這不是牛頓定律,只是一種測量質量的方法)。

因此我們得出這個結論:我們可以用兩種方法度量質量。要麼我們稱它的重量(非常簡單),要麼我們測量它對加速度的抵抗(使用力與加速度的比值)。

引力質量與慣性質量

人們做了許多實驗以測量同一物體的慣性質量和引力質量。所有的實驗結果都得出同一結論:慣性質量等於引力質量(實際上是成正比,調整係數後,就變成"等於"了,這麼做是爲了方便計算)。

牛頓自己意識到這種質量的等同性是由某種他的理論不能夠解釋的原因引起的。但他認爲這一結果是一種簡單的巧合。與此相反,愛因斯坦發現這種等同性中存在着一條取代牛頓理論的通道。

日常經驗驗證了這一等同性:兩個物體(一輕一重)會以相同的速度“下落”。然而重的物體受到的地球引力比輕的大。那麼爲什麼它不會“落”得更快呢?因爲它對加速度的抵抗更強。結論是,引力場中物體的加速度與其質量無關。伽利略是第一個注意到此現象的人。重要的是你應該明白,引力場中所有的物體“以同一加速度下落”是(經典力學中)慣性質量和引力質量等同的結果。

關注一下“下落”這個表述。物體“下落”是由於地球的引力質量產生了地球的引力場。兩個物體在所有相同的引力場中的加速度相同。不論是月亮的還是太陽的,它們以相同的比率被加速。這就是說它們的速度在每秒鐘內的增量相同。(加速度是速度每秒的增加值)

引力質量和慣性質量的等同性

愛因斯坦一直在尋找“引力質量與慣性質量相等”的解釋。爲了這個目標,他作出了被稱作“等同原理”的第三假設。它說明:如果一個慣性系相對於一個伽利略系被均勻地加速,那麼我們就可以通過引入相對於它的一個均勻引力場而認爲它(該慣性系)是靜止的。

廣義相對論的原理是什麼 其理論內容如何 第2張

讓我們來考查一個慣性系K’,它有一個相對於伽利略系的均勻加速運動。在K 和K’周圍有許多物體。此物體相對於K是靜止的。因此這些物體相對於K’有一個相同的加速運動。這個加速度對所有的物體都是相同的,並且與K’相對於K的加速度方向相反。我們說過,在一個引力場中所有物體的加速度的大小都是相同的,因此其效果等同於K’是靜止的並且存在一個均勻的引力場。

因此如果我們確立等同原理,物體的兩種質量相等只是它的一個簡單推論。 這就是爲什麼(質量)等同是支持等同原理的一個重要論據。

第四個原理

通過假定K’靜止且引力場存在,我們將K’理解爲一個伽利略系,(這樣我們就可以)在其中研究力學規律。由此愛因斯坦確立了他的第四個原理。

理論內容

等效原理

愛因斯坦提出“等效原理”,即引力和慣性力是等效的。這一原理建立在引力質量與慣性質量的等價性上。根據等效原理,愛因斯坦把狹義相對性原理推廣爲廣義相對性原理,即物理定律的形式在一切參考系都是不變的。物體的運動方程即該參考系中的測地線方程。測地線方程與物體自身固有性質無關,只取決於時空局域幾何性質。而引力正是時空局域幾何性質的表現。物質質量的存在會造成時空的彎曲,在彎曲的時空中,物體仍然順着最短距離進行運動(即沿着測地線運動——在歐氏空間中即是直線運動),如地球在太陽造成的彎曲時空中的測地線運動,實際是繞着太陽轉,造成引力作用效應。正如在彎曲的地球表面上,如果以直線運動,實際是繞着地球表面的大圓走。

幾何基礎

引力是時空局域幾何性質的表現。雖然廣義相對論是愛因斯坦創立的,但是它的數學基礎的源頭可以追溯到歐氏幾何的公理和數個世紀以來爲證明歐幾里德第五公設(即平行線永遠保持等距)所做的努力,這方面的努力在羅巴切夫斯基、波爾約、高斯的工作中到達了頂點:他們指出歐氏第五公設是不能用前四條公設證明的。非歐幾何的一般數學理論是由高斯於1827年完成的(1828年發表),他在研究曲面的性質時不再借助外圍空間,而直接將曲面作爲研究對象,創立了曲面的“內蘊”幾何學。1854年,高斯的學生黎曼將高斯的內蘊幾何學推廣到高維空間,建立起任意維度的彎曲空間的幾何學基礎,被稱爲黎曼幾何,在愛因斯坦發展出廣義相對論之前,絕大多數人認爲非歐幾何是無法應用到真實世界中來的。

 愛因斯坦場方程以及史瓦西解

在廣義相對論中,引力的作用被“幾何化”——即是說:狹義相對論的閔氏空間背景加上萬有引力的物理圖景在廣義相對論中變成了黎曼空間背景下不受力(假設沒有電磁等相互作用)的自由運動的物理圖景,其動力學方程與自身質量無關而成爲測地線方程。

引力場方程是一個非常複雜的二階偏微分方程,有16個自變量。

廣義相對論的原理是什麼 其理論內容如何 第3張

利用上述的度規可以得出引力對時間的影響。

預言

按照廣義相對論,在局部慣性系內,不存在引力,一維時間和三維空間組成四維平坦的歐幾里得空間;在任意參考系內,存在引力,引力引起時空彎曲,因而時空是四維彎曲的非歐黎曼空間。愛因斯坦找到了物質分佈影響時空幾何的引力場方程。時間空間的彎曲結構取決於物質能量密度、動量密度在時間空間中的分佈,而時間空間的彎曲結構又反過來決定物體的運動軌道。在引力不強、時間空間彎曲很小情況下,廣義相對論的預言同牛頓萬有引力定律和牛頓運動定律的預言趨於一致;而引力較強、時間空間彎曲較大情況下,兩者有區別。廣義相對論提出以來,預言了水星近日點反常進動、光頻引力紅移、光線引力偏折以及雷達回波延遲,都被天文觀測或實驗所證實。關於脈衝雙星的觀測也提供了有關廣義相對論預言存在引力波的有力證據。

廣義相對論的原理是什麼 其理論內容如何 第4張

愛因斯坦提出了革命性的思想,即引力不像其他種類的力,它只不過是時空不是平坦的這一事實的結果,而早先人們假定時空是平坦的。像地球這樣的物體並非由於稱爲引力的力使之沿着彎曲軌道運動,相反,它沿着彎曲空間中最接近於直線路徑的東西運動,這個東西稱爲測地線。一根測地線是臨近兩點之間最短(或最長)的路徑。在廣義相對論中,物體總是沿着四維時空的直線走。儘管如此,在我們看來它在三維空間中是沿着彎曲的路徑。(這正如同看一架在非常多山的地面上空飛行的飛機。雖然它沿着三維時空的直線飛,它在二維的地面上的影子卻是沿着一條彎曲的路徑。)廣義相對論的另一個預言是,在像地球這樣的大質量的物體附近,時間顯得流逝得更慢一些。這是因爲光能量和它的頻率(光在每秒鐘裏搏動的次數)有一種關係:能量越大,則頻率越高。當光從地球的引力場往上行進,它失去能量,因而其頻率下降(這表明兩個相鄰波峯之間的時間間隔變大。)在上面的某個人看來,下面發生的每一件事情都顯得需要更長的時間。1962年,人們利用一對安裝在水塔頂上和底下的非常準確的鐘,驗證了這個預言,發現底下那隻更接近地球的鐘走得比較慢。 牛頓運動定律使在空間中的絕對位置的觀念壽終正寢,而相對論擺脫了絕對時間。考慮一對雙生子。假定其中一個孩子去山頂上生活,而另一個留在海平面,第一個將比第二個老得快些。這叫做雙生子佯謬,但是,只是對於頭腦中仍有絕對時間觀念的人而言,這纔是佯謬。在相對論中並沒有唯一的絕對時間,相反,每個人都有他自己的時間測度,這依賴於他在何處並如何運動。

應用

廣義相對論由於它被令人驚歎地證實以及其理論上的優美,很快得到人們的承認和讚賞。然而由於牛頓引力理論對於絕大部分引力現象已經足夠精確,廣義相對論只提供了一個極小的修正,人們在實用上並不需要它,因此,廣義相對論建立以後的半個世紀,並沒有受到充分重視,也沒有得到迅速發展。到20世紀60年代,情況發生變化,發現強引力天體(中子星)和3K宇宙背景輻射,使廣義相對論的研究蓬勃發展起來。廣義相對論對於研究天體結構和演化以及宇宙的結構和演化具有重要意義。中子星的形成和結構、黑洞物理和黑洞探測、引力輻射理論和引力波探測、大爆炸宇宙學、量子引力以及大尺度時空的拓撲結構等問題的研究正在深入,廣義相對論成爲物理研究的重要理論基礎。

歷史記事
歷史真相
未解之謎
世界史
歷史上的今天